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Extinction within the Limit of Validity of the Darwin Transfer Equations. 
I. General Formalisms for Primary and Secondary Extinction and Their Application 

to Spherical Crystals 
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A theory of extinction is derived which is valid within the limit of the Darwin intensity transfer equa- 
tions. An expression describing the effect of n-fold rescattering within an ideal crystallite is derived, 
which differs from the equation given by Zachariasen because independent coordinates xl and x2 based 
on an external coordinate system have been used, rather than the coordinates h and t~ which are only 
mutually independent if the crystal is a parallelepiped with faces parallel to the incident and diffracted 
beams. Furthermore, the derivation of the earlier expressions is based on a generally unjustifiable reversal 
of the direction of the diffracted ray (interchange of t2 and t;). An exact expression is derived for the 
diffraction cross section o(e0 in the perfect crystallite, which contains a factor sin 20 neglected in the 
earlier work. As a result, the previously used classification of crystals into type I and type II becomes 
less well defined because at very small Bragg angles particle size always becomes the dominant effect. 
It is shown that the extinction factor yp (p = primary), for a perfect spherical crystallite, calculated with 
the present theory, is in good agreement with calculations based on the dynamical theory. Furthermore, 
the limiting behavior of the expressions at 20= 0 and zr justifies some of the mathematical approxima- 
tions made. For a mosaic crystal the extinction coefficient y is written as y~,. Ys (s = secondary), yp is 
evaluated numerically from the expressions derived. An analytical expression for yp is obtained by 
least-squares fit to the numerical values. A similar procedure is followed for ys, in the case of a Gaussian, 
Lorentzian and Fresnellian distributions of the crystallites and a spherical mosaic crystal. Analysis of 
the results shows that the Zachariasen expression can be used for small extinction (y > 0.8), provided 
the 0 dependent factor is properly introduced for particle-size-affected extinction. Allowance for 
polarization effects in the X-ray case is discussed. Absorption effects cannot be treated separately from 
extinction for all but small values of 1 - y .  Coefficients of the analytical extinction expressions are given 
for absorbing spherical crystals with/~R values <4. Application of the expressions and extension to 
non-spherical geometries will be treated in following publications. 

Introduction 

The theory of extinction in X-ray diffraction (Zacha- 
riasen, 1967) - here referred to as Z - has been applied 
to a variety of cases (Zachariasen, 1968a, b, c, 
1969). In general, significant improvements were 
achieved in comparison to the results of earlier treat- 
ments (Zachariasen, 1963; James, 1957). The theory 
has been generalized to include anisotropic extinction 
effects and expressions have been derived for inclusion 
of extinction parameters in a least-squares refinement 
(Coppens & Hamilton, 1970; Coppens, 1969; Larson, 
1969). The theory has also been extended to include 
the Borrmann effect (Zachariasen, 1968d) in case of 
high absorption. Various authors have pointed out 
shortcomings of the theory, which are of two different 
natures. The most important limitation is due to the 
theory being of kinematical nature (Werner, 1969). 
It has only been applied for secondary extinction, and 
is limited by the approximations inherent in the 
mosaic model (Azaroff, 1964). Lawrence (1972) has 
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shown recently, using a large crystal of LiF, that the 
method is not very suited to correct for severe primary 
extinction. 

It has been pointed out (Cooper & Rouse, 1970, 
1971 ; Cooper, 1970) that it is possible to give improved 
solutions to Zachariasen's differential equations. 
Very recently (Sequeira, Rajagopal & Chidambaram, 
1972a, b), an empirical improvement to the ex- 
tinction correction formula has been applied in a 
refinement of the severely extinguished neutron inten- 
sities of r-glutamic acid. HC1. These authors also point 
out the existence of a correlation between conventional 
and extinction parameters. 

Zachariasen's correction underestimates extinction 
and some bias can result in the thermal parameters. 
Especially for electron-density analysis, it is necessary 
to have unbiased thermal parameters from neutron 
diffraction. Ideally, the extinction treatment should 
be based on the dynamical theory (Takagi, 1961; 
Authier, 1970). As no general solutions using this 
theory are known, we decided to reconsider carefully 
the Darwin transfer equations used by Zachariasen, 
comparing whenever possible the results  with those 
from dynamical calculations. In the course o f  this 
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analysis, some quite fundamental errors in Zacha- 
riasen's solution became apparent. As a result, the 
modifications by Cooper & Rouse also have to be 
reconsidered. Using a different procedure, we have 
obtained an improved formalism for both primary 
and secondary extinction, suitable for inclusion in a 
refinement program, and applicable to spherical or 
ellipsoidal crystals (Becker & Coppens, 1974). The 
present article will consist of three parts. After a 
general treatment of the problem, the formalism will 
be applied to spherical crystals. Subsequently, polar- 
ization and absorption effects are considered. In 
following articles examples of application of the new 
theory will be studied and the theory will be generalized 
to a crystal of more general shape and to anisotropic 
extinction. 

Most of the mathematical derivations can be found 
in the first four Appendices of this article. 

I. General formalism 

I. 1. Review of the kinematical theory 
Let us first review some important results of the 

kinematical theory of diffraction by an ideal crystal 
[see for example Azaroff (1968)]. It is assumed that 
all the observations are made in a horizontal plane, 
the crystal being able to rotate about a vertical axis. 
Let Uo and u be the unit vectors along the incident and 
diffracted beams, which coincide with u ° and u ° when 
the Bragg condition is exactly fulfilled (Fig. 1). x~ and xz 
are unit vectors in the diffraction plane, respectively 
perpendicular to U°o and u °, and x3 is a unit vector along 
the vertical axis. The diffraction vector S will be defined 
by" 

S = H + 2-1(e1~ 1 + e21~ 2 "AI- e3f3) 

= H + A - l e  (1) 

where H is the reciprocal vector corresponding to a 
given reflection. The intensity of radiation scattered in 
direction u is given by" 

aFK [ 2 (2) 
Ik(~)=J° - ~ 0 1  I ~  exp (2zri2-~c. L)I 2 (Z.22) 

where the symbols are defined in the glossary (Appen- 
dix E). The power recorded in the counter, Pk(eO, 
which depends only on the small divergence el of the 
incident beam from u~ is given by: 

(3) Pk(ex)--R2 I I Ik(e)dezde3. (Z. 23) 

The diffracting cross section per unit volume and 
unit intensity is defined by: 

a(eO=Jy~v-~Pk(e~). (4) (Z. 20) 

cr(e0 is assumed to be constant inside the crystal, and 
dependent only on the size and shape of the average 
mosaic domain. Finally, the quantity Q, average cross 

section per unit volume of crystal, is obtained by 
integration of a(el) over el 

Q=v-IIaFK[2 I I I I ~ exp (2rriA-l~ . L)12delde2de3 

=(23/sin 20).  ]aFKlZv -~ ~. ~ 6(L-L ' )*  
L L' 

which gives the known result: 

[aFKI223/sin20. (5) O--~- 
The kinematical integrated intensity ~k is: 

~k= I Pk(ex)dex=J°va" (6) 

If extinction effects are now introduced, the inte- 
grated intensity becomes ~ ,  which is related to ~k by: 

= ~k .  Y (7) 

where y is the extinction factor which has to be cal- 
culated. 

I. 2. Extinction in an ideal crystal 
Given a crystal of known shape, it is possible using 

previous arguments, to calculate or(el). One of the 
major assumptions in what follows is that, when 
allowing for mutual coupling between incident and 
diffracted beams, the diffracting unit cross section re- 
mains o(el) at any point inside the crystal. If one 
considers a section of the crystal in a plane parallel to 
the diffraction plane (Fig. 2), a coordinate system is 
defined with an origin O and axes parallel to the 
incident and to the diffracted directions (coordinates 
xl and x2). The coordinate x3 is taken along the vertical 
axis. As the angles ei which allow for measurable 
diffracted intensity are very small, the variations of 
u0 and u from Uo ° and u ° can be neglected in geometrical 
calculations. For a point M inside the crystal, with 

* 6(u-a) represents a Dirac distribution centered at point a. 

ATOMIC REFLECTING PLANE I 

I 

f ~ ..... DIFFRACTiON~-~-7 // ~ PLANE i / 

I "  T, ~ .  I 

.:OLLIMATOR / I 

Fig. 1. Definition of the directions of the incident beam u0 
and of the diffracted beam u with respect to their ideal 
values uo ° and u ° (defining the diffraction plane), when 
the Bragg condition is fulfilled. Ro is the distance between the 
crystal and the counter. 
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coordinates xl and Xz, the points M °, MI, M °, Mz 1 are 
those defined on Fig. 2, with respective coordinates 
(x °, Xz), (xl, x2), (xl, x°), (xl, x~). It is important to 
notice that x ° and xl are functions of Xz (given by the 
equation of the limiting surface of the crystal) and that 
x ° and xl are functions of x~. The following distances 
are defined: 

f i  = M ° M  = x l  - x ° 

t2 = M ° M  = x 2 -  x ° (8) 

t [z= M M I =  x l -  x2, 

where t, and t~ are the path lengths pertinent for ab- 
sorption factor calculations. The intensity of the 
scattered beam at point M will be I (M),  that of the 
incident beam being Io(M). These intensities are subject 
to the boundary conditions: 

/o(M°) = J o  (9) 
I (M0)=0.  

! 

Fig. 2. Section of the crystal in a plane parallel to uo ° and u °, 
the incident and diffracted directions. The coordinates of 
each point of interest are written in parentheses, tl = M~M; 
t'2= MMI. 

U o 
e,a 

o 
U o 
e~ 

Fig. 3. The two geometrical situations for a point M in the 
crystal, for the integration of equation (11). The area to 
be considered in (11) is the shaded one. 

If the exchange of energy between incident and dif- 
fracted beams at various points is considered 
(Zachariasen, 1965), one gets: 

ai0 
- c r ( I o - I )  (10a) 

cqx, 

- a ( I - I o )  (10b) 
8xz 
0Io ~I 

ex---7 + ~ = o .  (lOc) 

These equations differ from those of Zachariasen, in 
which tl and t 2 are considered independent variables, 
instead of Xl and x2. As a result, Zachariasen's solu- 
tions and those of Cooper & Rouse (1970) are only 
correct for the particular case of a parallelepiped whose 
edges are parallel to uo ° and u °, so that xl and x2 are 
equal to q and t2, and for an infinite parallel plate, 
where there is a linear relationship between q and t2. 

It is shown in Appendix A how the intensity I0 at 
point M (xl, x2) is related to I0 at the preceding points 
N(ux, u2) such that radiation travels from N to M by a 
single rescattering (Fig. 2). With the variables defined 
in Fig. 2, the result can be written: 

Io(xl, x2)=Jo exp ( -  ah) +aZ{exp [ -  a(xl + Xz)] 

lXldul I x2 x x~ u~ Io(ul, u2) exp [e(ul + u2)]du2} 

(11) 

[relation (A3)]. The power of the diffracted beam, 
P(ei) is given by (A2) 

P(e0=cr I Io(xl,x2) exp (-cr t ; )dv.  (12) 
t] /) 

Then the function rp(~) is defined by the relation: 

e(c,)=JoVa~o(~)=*'k(e,)~0(~) (13) (z.7) 
so that from (7) one gets: 

! a~o(cr)de, (14) (Z.9) y = Q - 1  

where, from (12) and (13), ~0(~r) can be written as: 

I dvlo(M) exp (-o-t~). (15) ~ 0 ( O ' )  = V -  I ~ $ ' ~  " 1  

v 

When ~0(~r) and a(e,) are known, (14) allows derivation 
of the extinction factor y for an ideal crystallite. 

Calculation of  ~0(cr): ~0(cr) is calculated by iterative use 
of the relation (11), where the area being considered in 
the integration is the shaded area shown in Fig. 3, for 
the two geometrically distinct situations (provided that 
the limiting surface of the crystal is convex). Applying 
(11) k iterative times allows for 2k-fold exchange of 
the intensity between the incident and the diffracted 
beams before point M is reached. Each iteration adds 
a term in which the power in cr is increased by 2 and 

A C 3 0 A  - 1"  
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accordingly a power series in (7 can be obtained 
(Appendix B) where the term with power (2p) in (7 
corresponds to the 2p-fold rescattering contribution. 
For example, the first-order approximation (k=0) 
which neglects the feedback term aI in equation (10a) 
gives the solution: 

I0 = Jo  exp ( - (7tl) (16a) 

~0((7) =v-~ t dv exp [-(7(q + t~)] (16b) 
t) /3 

partially correct the wrong variation with 0 of 
Zachariasen's theory. Their correction assumes that 
(Z. 14) is valid for (20=0); as a result the expression is 
not valid for very small or very large angles of diffrac- 
tion, though it gives a reasonable fit for angles of 
medium value. 

It may be mentioned that the solution given by 
Zachariasen for an infinite parallel plate (Z. 12-Z. 13) 
is valid, because of the symmetry in t2 and t~ for this 
particular geometry. 

according to (15). It is the expected result, (7 acting as 
an apparent absorption coefficient. The solution (Z. 11) 
given by Zachariasen (1967) involves t2 instead of tz, 
and as a result it applies to an angle (u0,u) equal to 
(n-20) (inversion of the diffracted beam into -u ) ,  
rather than to the intended angle 20. 

As discussed in Appendix B, the general solution, 
allowing for multiple scattering, can be approximated 
by: 

~o((7)"~_v -~,~I dv exp [-(7(q +t~)] Jo[2i(TV(qt~)] (17) 

where Jo(X) is a zero-order Bessel function. 
It is also shown in Appendix B that the result for 

~p((7) can be expressed in terms of a power series in (7: 

B (7 2 
cp ((7) = 1 - a t " ) +  ~ t ~ + . . .  

(7n 
+ ( - 1 ) " ~ -  t ~ + . . .  (18a) 

with 

t(n)= n 2 -1 (j) V dvtQ'2 "-J. (18b) 
j = O  v 

It appears that (18) is the same series as the solution 
(Z. 14) given by Zachariasen for a parallelepiped with 
two edges parallel to uo ° and u °, provided we replace 
t2 by t2 [interchange of angles (20) and (n-20)]. Because 
of the symmetry with respect to (20=n/2) in this 
particular case, the resulting values for ~0((7) are the 
same. 

The approximations necessary to derive (17) for a 
crystal of arbitrary convex shape indicate that this 
formula is very appropriate for low Bragg angles 
(where the extinction effect is the most severe). For 
high Bragg angles ~0((7) defined by (17) is somewhat 
overestimated, which implies an underestimate of the 
extinction. For the two limit cases (20 = 0) and (20 = n), 
an exact solution can be found to equations (10) 
[equations (B8) and (B10) of Appendix B]. It is also 
shown in Appendix B that (17) gives the exact limit for 
20=0). For 20=n  it will be shown below, for a 
spherical crystal, that the error made using (18) is 
only of the third power in (7. As the extinction is very 
small for 20=n,  we can conclude that (17) and (18) 
are a reasonable approximation for crystals of general 
shape in the whole range of Bragg angles. 

The solutions given by Cooper & Rouse (1970) 

Calculation of  a(el): For a crystal with a convex 
limiting surface it is possible to evaluate exactly the 
diffracting cross section (7(ei) (Appendix C), as defined 
by equations (2)-(4). The result is: 

l sin2 n~lc~ 
(7(el)=Qv-I v dr .  ~ .  (/rglO02 (19a) 

where 
~ = l  sin 20/2 (19b) 

if l is the thickness of the crystal, parallel to the dif- 
fracted beam. The expression (19) is different from the 
formulas used in previous treatments (Zachariasen, 
1967; Cooper & Rouse, 1970), where: 

sin 2 ~ g l ~ O  

(7(e0"~ Q~0 (nell0)2- (20) (Z. 24) 

~o = L/2 
where for spherical crystals f j_ was interpreted as the 
average thickness, in a direction parallel to the dif- 
fraction plane (u0°,u °) and perpendicular to uo ° (mean 
thickness parallel to ~). The main difference is 
the occurrence of an additional factor sin 20; it is 
clear that the definition of t± must be incorrect, because 
it would give an infinite value for (7(e0 at 20 = 0 in the 
case of an infinite plane parallel plate. 

It will be shown below that (7(e0 can be calculated 
exactly using (19) for various shapes of crystals. 

I. 3. Extinction in a mosaic crystal 
The mathematical treatment is similar in the case of 

a mosaic crystal. Equations (10) remain of the same 
form but x~ and x2 are now variables which span the 
mosaic crystal, with the same boundary conditions as 
before. If the misorientation of the various crystallites 
is considered, the incident beam striking a given crys- 
tallite makes an angle (el+r/) with the ideal Bragg 
direction if el is still the external divergence angle of 
the incident beam and r/is the misalignment angle of 
the crystallite. As a result, the diffracting cross section 
inside this crystallite is (7(el + r/). It is possible to define 
an angular distribution W(r/) for the crystallites. If one 
considers the travel of the incident and diffracted beams 
inside the mosaic crystal, outside a given crystallite, 
(7(e~) in equation (10) is replaced by: 

6(ca) = I (7(el + 0) W(q)drl 

6(e~)=(7. W (21) 
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if it is assumed that all crystallites are of the same 
average shape. 

This function 6(el), which is the mean diffracting unit 
cross section inside the mosaic crystal, corresponds to 
the secondary extinction effect. Because they describe 
transfer of intensity, the equations (10) are physically 
more realistic for evaluating secondary extinction than 
for primary extinction (Werner, 1969), since scattering 
becomes incoherent when randomly oriented domains 
are considered. Expression (21) describes two broad- 
ening effects of the reflection curve: the particle size 
effect in 0., giving a half width e, which is inversely 
proportional to the effective particle size (l sin 20), 
and the mosaic-spread distribution, described by a half 
width ew. There are two important limiting cases: 

(1) The effective particle size is the dominant effect 
determining the width of the reflection curve. Thus, 
when (l sin 20) is small (in which case primary extinc- 
tion is negligible: 

,7@1)~0.@1). (22) 

This corresponds to the type II crystal defined by 
Zachariasen (e,>>ew). It should be noted that, because 
of the sin 20 dependence, for any particle size, any 
crystal will behave as type II crystals for very small 
Bragg angles. 

(2) If on the contrary, the particle size is large or the 
mosaic spread is small (e.~ew) the secondary extinc- 
tion is dominated by the mosaic distribution (type I 
crystal) and thus: 

6(e,)..~QW(el). (23) 

In this case, it becomes necessary to consider the travel 
of the beams within a perfect crystallite. For a given 
incident beam direction (a given e~), primary and 
secondary extinction effects may, in first approxima- 
tion, be considered as independent, or 

~0(c, w)  ___ ~0p(0.). ~s(~) 
(the indices p and s refer to primary and secondary 
extinction). The same assumption will be used in 
averaging over various values of e~, which leads to: 

Y ~-Yv. Y~. (24) 

A similar assumption has been used by various authors 
(Hamilton, 1957, 1963; Chandrasekhar, 1956). As 
~ov(0. ) is generally not very different from 1, the approxi- 
mation (24) is believed to be reasonable. This is con- 
firmed by the application of (24) to neutron intensity 
data on SrF2 and to LiF (Becker & Coppens, 1973). 

II. Detailed solution of the transfer equations 
for specific crystal shapes, especially spheres 

II. 1. Perfect infinite parallel plate 
An analytical solution can be found to equations 

(10), which coincides with the solution given by 
Zachariasen (1967). In the symmetrical Laue case: 

• ~0(0.) = {1 - e x p  ( -  2a/)}/20./ (25a) (Z. 12) 

where [=Do/cos 0 (Do: thickness of the plate), f, the 
mean path length through the crystal, coincides with 
the thickness l of the crystal, parallel to the direction 
of diffraction [see equation (19)]. 

In the symmetrical Bragg case, ~0(0.) is given by 

~0(0.) = 1/(1 +off) (25b) (Z. 13) 
with 

f=  l=  D0/sin 0. 

The present theory gives for 0.(e0 the solution (19) 

sin z (nei~) 

0.(e0 = Q" 0zel00z 
with 

= l sin 20/2 

or, for the two symmetrical cases, 

0~Laue =2D0 sin 0/2 
0CBragg = 2D0 cos 0/),. 

In comparison, the values for , in the expression 
derived by Zachariasen for a(e,) [equation (20)] are 
too small by a factor of two. 

If ~0(a) is expanded in a power series, one gets for 
both Bragg and Laue cases: 

e(a)~  1 - 0 . t + . . .  

and the primary extinction correction yp (14) is given 
by: 

yv~Q-~ S crde~-Q-~fl 0.Zde~ + . . . .  

Thus: 
Yv (present theory)~ 1 -2Qc~f+ . . . .  (27a) 

The dynamical theory has been extensively discussed 
for an infinite parallel plate (Zachariasen, 1945; James, 
1963). The series expansion for primary extinction is 
given by: 

yp (dynamical theory)~ 1 -½Q~f+  . . . .  (27b) 

The agreement with dynamical theory obtained by 
Zachariasen for the parallel plate is unfortunately due 
to errors in his derivation of O"(81) ; it must be con- 
cluded that the transfer equations (10) incorrectly 
describe the primary extinction effect in an infinite 
parallel plate. 

II. 2. Perfect spherical crystal 
The dynamical themy, in a first-order approxima- 

tion, gives for primary extinction in a sphere of radius 
r (Weiss, 1952; Ekstein, 1951): 

Yv (dynamical theory) = 1 - ¼(QrZsin 20/2) + . . .  
(28) 

The function a(el) can be derived exactly (Appendix 
D) for a sphere: 

(ne,fl)z-(nelfl) sin (2ned') + sin 2 (Yqgfl) a(el)=3Ofl 
( ~ l p )  4 

(29) 
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where 
f l=2r sin 20/2. 

If  ~0(a) is taken as the series expansion (18), integrating 
a~o(a) over the angle el gives* 

yp (present theory)= 1 99 2 - v-a(Qr sin 20/2) + . . . .  (30) 

Thus the present theory agrees reasonably well with 
the dynamical results for a spherical crystal. 

Calculation o f  ~o(a) for  20 = 0 or 20 = rc: A closed form 
for ~0(a) can only be obtained for the two cases (20 = 0) 
and (20=70. Using equations (BS) and (B9) of Appen- 
dix B, it can be shown that:I" 

3 
~o°(ar) - 64(at) 3 {8(ar) 2 +4Gr exp ( -4er r )  

- [ 1 - e x p  ( - 4 a r ) ] }  (31) 

3 
~o~(ar) - 4(ar)3 {(ar)Z-(ar)½ +ln  (1 +2ar )} .  (32) 

As noted previously, the limit of the solution given 
by either equation (17) or equation (18) is not exact, 
for 20 = n. 

It is interesting to compare the two results for 20 = n. 
As (ar) is always small for high diffraction angles, a 
series expansion of (32) is possible and gives: 

It appears from Fig. 4 that for high values of (ar), 
1/~0(ar) tends to become linear with (ar) which corre- 
sponds to total reflection (Zachariasen, 1967). Ana- 
lytical fits to the results of Fig. 4 can be found, but it 
seems more appropriate to fit y analytically rather 
than ~o(ar), as it is the quantity of ultimate interest. 

The angular dependence of ~0(a) can also be 
evaluated from the series expansion (18), following 
arguments used by Cooper & Rouse (1970). The 
quantities t ~") were numerically calculated for various 
angles 0 and the following fit was tried: 

t(")(O) = t (")(0) + {t (")(z0- t(")(O)}f,(0).~ 

As series (18) can be slowly convergent, this analysis 
was done for values of n up to 16 and a reasonable fit 
appeared to be: 

f,(O)=sinn+3/20 

thus ~0(ar) can be written: 

~0 (ar) ,,- ~0°(ar) 
+s in  a/z O{~o~(ar(sin 0)-cp°(arl/sin 0)}. (34) 

Unfortunately, an analytical integration of {a~0(a)} 
over el, using (34), is generally impossible. However, 
as described below an adequate formula for y can be 
obtained by numerical integration followed by least- 
squares fit to an analytical expression. 

~o,~(ar)=l - 16 -2 o6 -3 - o t  +T~(ot) --~(o-t) 
2 5 6  " 4 +x--~(at) + . . .  (33a) 

where [ is the mean thickness of the crystallite (~2r for a 
spherical crystal, Appendix D). The series approxima- 
tion (18) gives for 20=~z (see Appendix D for the cal- 
culation of t c")) 
~(ar),-, 1 - 16 " 2  8 0  " 3  1 5  " 4  --at+-f-~(ot) --~-r(at) +-i-~(o't) + . . . .  (33b) 

It can be concluded that the solution given by (17) or 
(18) is a second-order approximation of the exact 
solution for very large scattering angles. For 0=0 ,  (17) 
and (31) represent the same function, which suggests 
validity of (17) and (18) in the whole range of 20 angles. 

Evaluation o f  ~o(a) at intermediate values o f  20. ~(a) for 
different values of 0 and (ar) has been obtained using 
numerical Gaussian integration of (17) (six grid points 
in each direction proved to give a sufficient accuracy). 
The results for [1/~0(ar)] are plotted in Fig. 4. The 
angular dependence appears to be very important and 
the actual cp(o-r) differs significantly from the approxi- 
mation given by Zachariasen 

~o(o-),-, 1/(1 +af )  (Z. 19) 

at all but small values of ar. 

Evaluation o f  the correction for  primary extinction, yp. 
If  a(el) is written as 

o'(el) = o'(O)f(r/) 

f,(O) = O, f,(zO = 1. 

/ 
/ /  

/ 
/ 

/ / 

, IC 

SIN 0 = 

SINO = 0.: E(ZIATION 

* From equation (29) it is possible to show that j '~del= 
33/70QZfl. 

i" tp(o') depends on the product o-r as easily seen from equa- 
tions (17) and (18), and may therefore be designated as ~0(ar). 

o'/" 

Fig. 4. Plot of {1/tp(ar)} as a function of {ar} for various 0. 
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where  

a(O) = agO fl 
and  

fl = ~f sin 20/2 = 2r sin 20/2 ,  

the  quan t i ty  trr becomes :  

SINe =O. ...~ .-" " "  " ' "  " "  " "  

$1NO = O. 

SIN O=  O .50~ .  ~ 

_ sin o= 070~/j2" 

~ ZACHAR,ASEN ~QUAnON 

o ~' ~ ~ ~ ib k ~* I~ .'8 ~0 ~z i4-- 
x 

Fig. 5. Plot of the inverse of the primary extinction correction 
(1/yp) as a function of the parameter x, for various 0. 

where  
~r=xf(q) 

x = t r ( 0 ) r  = ¼Qflr= Q~r= ~Q~f (35a) 

and  a is the  m e a n  value of  the p a r a m e t e r  a defined 
previously [equa t ion  (19)] 

a=¼fl=~2-r sin 20/2. (35b) 

F r o m  (14), yp is thus  given by:  

y p =  - ~  f(r/)~o[xf(r/)]dr/ . (36) 

y ,  is thus  only d e p e n d e n t  on  x a n d  0. Fo r  given values 
of  x and  0, a Gauss ian  grid is i n t r o d u c e d  for the  
var iable  r/ and  for each co r r e spond ing  value o f  
{xf(r/)}, ~o(trr) is ca lcula ted  as descr ibed  previously.  
The  result  of  the ca lcula t ion o fyp  is given in Table  1 as 
a func t ion  o f  x and  sin 0. A graphical  r epresen ta t ion  
is shown  in Fig. 5. 

An  analyt ical  expression was f o u n d  by least-squares 
fit, in the  range (0 < x < 30), using:  

A(O)x 2 }-1/~ 
yp= l + 2x + l + B(O)x (37) 

Table  1. Primary extinction correction for a sphere, as a 

Values are multiplied by 104 . 

function o f  x =  ~Qaf and sin 0 

sin 0 0.05 0.10 0-20 0-30 0-40 0-50 0.60 0.70 0.80 0.90 
X 

0"1 9088 9091 9096 9096 9096 9096 9095 9095 9100 9107 
0"2 8367 8373 8382 8382 8384 8388 8391 8399 8417 8440 
0"4 7222 7231 7249 7252 7264 7280 7299 7329 7378 7438 
0"6 6365 6375 6399 6410 6432 6461 6497 6549 6628 6723 
0"8 5706 5716 5746 5763 5794 5835 5887 5957 6061 6185 
1 5185 5198 5232 5253 5292 5343 5407 5492 5615 5763 
1"5 4273 4286 4328 4360 4410 4476 4561 4670 4824 5012 
2 3683 3696 3743 3780 3836 3910 4004 4125 4295 4506 
2"5 3269 3282 3332 3372 3430 3508 3605 3731 3910 4134 
3 2952 2975 3025 3067 3126 3204 3303 3431 3614 3846 
4 2532 2544 2695 2638 2695 2772 2869 2997 3180 3418 
5 2242 2253 2303 2345 2399 2474 2567 2693 2873 3111 
6 2030 2040 2089 2130 2182 2253 2342 2464 2640 2875 
7 1867 1876 1924 1964 2013 2081 2166 2284 2454 2685 
8 1736 1744 1791 1830 1877 1941 2023 2137 2303 2529 
9 1627 1636 1681 1719 1764 1825 1904 2015 2176 2397 
10 1536 1544 1588 1625 1668 1727 1803 1910 2067 2283 
12 1388 1396 1437 1473 1513 1568 1637 1740 1889 2095 i 

14 1273 1280 1319 1354 1391 1443 1510 1606 1748 1946 
16 1180 1186 1224 1257 1293 1342 1405 1497 1634 1824 
18 1103 1108 1145 1177 1211 1257 1318 1406 1538 1722 
20 1037 1042 1075 1109 1141 1185 1243 1329 1456 1634 
25 0908 0913 0945 0975 1005 1045 1097 1176 1294 1460 
30 0814 0820 0848 0876 0904 0940 0989 1063 1173 1330 

Table  2. Variation with 0 o f  the least-squares-fitted coefficients A(O) and B(O) for a perfect sphere, 
when the primary extinction correction is yp = { 1 + 2x + A(O)x2/1 + B(O)x}- 1/2 

Q(0) is the  reliabili ty fac tor  o f  the fit for  a given angle. 

sin 0 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
A(O) 0.65 0.64 0.61 0.58 0.52 0.42 0.31 0.20 0.06 0 
B(O) 0.18 0.18 0.19 0.21 0.21 0.20 0.19 0-18 0.13 ,,~ 
Q(0) 0-018 0.018 0.018 0.017 0.017 0.017 0.016 0.015 0.012 ~ 



136 E X T I N C T I O N  W I T H I N  T H E  L I M I T  O F  T H E  D A R W I N  T R A N S F E R  E Q U A T I O N S .  I 

and varying A(O) and B(O). The agreement factor for 
each value of 0 is defined as: 

e (0)=  ~ IAy(O,x,)I/~ lyl. 
x i  x i  

The results of this calculation are shown in Table 2. 
An analytical fit can be found for the 0 dependence of 
A(O) and B(0): 

A(O) = 0.20 + 0.45 cos 20 
B(0 )=0 .22 -0 .12  (0-5-cos  20) 2 . (38) 

It is apparent from Fig. 5 that the approximation of 
Zachariasen can be used only for very small extinction, 
provided that his value for x in 

yp (Zachariasen) = (1 -t- 2x)- 1/2 (Z. 27) 

is replaced by (35a) containing the factor sin 20. 
The limiting value ofy  for large values of x will now 

be compared with the results which can be expected 
from perfect-crystal theory (James, 1957). The limit of 
y(x) for large values of x according to (37) is (c/I/x). 
As x is proportional to IF21, the integrated intensity 
has limit values proportional to IFI, a result in ac- 
cordance with dynamical theory (James, 1957). 

For the case of X-ray diffraction, the ratio ( ~ ± / ~ , )  
of the integrated intensities relative to the perpendi- 
cular and parallel components of the electric field is 
known to be equal to Icos 201 for a perfect crystal 
(James, 1957). The present theory as expressed by (37) 
gives the right limit for large values of x, since x is 
proportional to the polarization term K 2 
(=  cos 2 20 or 1). 

From these considerations and the agreement be- 
tween expressions (28) and (30), it may be concluded 
that the present theory gives a reasonable representa- 
tion of the primary extinction effect in a spherical 
crystal. 

II. 3. Extinction in a spherical crystal containing idealized 
spherical domains 

The calculation of the secondary extinction correc- 
tion Ys can be performed using an equation similar to 
(36), where a is replaced by the convoluted value 
[defined in (21)], and the radius of the crystal becomes 
R. Usually the assumption is made that the angular 

IB 

16 

14 

12 

tO SINO: 

_~ 8 S~NO: O5% 

2 

I 2 '~ g 8 t0 1'2 It2 16 18 20 ~?. 24 
x 

Fig. 6. Plot of the inverse of the secondary extinction correc- 
tion (1/ys) as a function of the parameter X, for various 0: 
Gaussian distribution. 

Table 3. Secondary extinction correction for a sphere, as a function of X= 2Q~ c T 
and sin 0, assuming a Gaussian distribution 

All values are multiplied by 104 . 

sin 0 0.05 0.10 0.20 0"30 0"40 0.50 0-60 0.70 0.80 0"90 
X 

0"1 9042 9045 9049 9049 9049 9049 9049 9049 9053 9063 
0-2 8230 8236 8247 8247 8249 8253 8257 8267 8287 8312 
0"4 6943 6953 6972 6977 6990 7008 7030 7064 7119 7187 
0"6 5981 5992 6019 6031 6056 6989 6130 6189 6278 6385 
0-8 5242 5254 5287 5306 5341 5387 5446 5526 5643 5783 
1 4660 4673 4712 4737 4779 4837 4911 5006 5146 5312 
1"5 3647 3658 3706 3742 3798 3874 3970 4094 4268 4481 
2 2995 3009 3062 3104 3167 3252 3358 3495 3689 3927 
2"5 2545 2559 2615 2660 2725 2815 2925 3069 3271 3524 
3 2215 2229 2286 2333 2400 2489 2602 2747 2954 3215 
4 1765 1777 1835 1883 1948 2036 2145 2290 2496 2763 
5 1476 1482 1538 1585 1647 1731 1836 1976 2178 2445 
6 1261 1272 1326 1373 1431 1510 1610 1746 1941 2204 
7 1104 1114 1167 1212 1267 1342 1437 1568 1757 2013 
8 0982 0991 1042 1085 1137 1209 1300 1426 1608 1858 
9 0883 0892 0941 0984 1033 1100 1187 1309 1486 1729 
10 0802 0810 0857 0899 0946 1011 1094 1211 1382 1619 
12 0676 0682 0727 0766 0809 0869 0946 1056 1217 1442 
14 0582 0587 0630 0667 0707 0762 0834 0938 1090 1304 
16 0508 0514 0554 0590 0627 0679 0745 0844 0989 1193 
18 0450 0455 0493 0528 0563 0612 0675 0768 0907 1102 
20 0403 0407 0443 0477 0511 0556 0616 0705 0838 1026 
25 0315 0319 0352 0383 0413 0453 0506 0586 0706 0878 
30 0256 0259 0289 0318 0345 0381 0429 0502 0612 0772 
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or ien ta t ions  of  the crystal l i te  fol low ei ther  a Gauss i an  wi th  
d i s t r ibu t ion :  

WG(el) = 1/2g exp (--  2zg2e~ z) (39a) 

or a Lo ren t z i an  d i s t r ibu t ion :  

WL(~I) = 2g/(1 +4rcZe~g2). (39b) 
wi th  

It  is shown in A p p e n d i x  D tha t  the expression for a is 
m u c h  simplif ied if  the  diffract ing power  or(el) of  
perfect  crystal l i te  is a p p r o x i m a t e d  respect ively by a 
Gauss i an  or a Loren tz i an  d i s t r ibu t ion  (D6).  (~ is then  
given by one of  the two fo l lowing express ions :  

6G(el) = Qoc~ exp ( - z c e 2 ~ )  (40a) 

IC 

s,No :00~/" ~ -  

s,.o : o . s o , ~ /  
.-~ s,.o: o . , o / ~ ¢ ' / ~ 1  

x 

Fig. 7. Plot of the inverse of the secondary extinction correc- 
tion (1/y.0 as a function of the parameter X, for various 0" 
Lorentzian distribution. 

c~ = ~/(1 

~,(eO = kQc~LI { 

~2 ~ 1/2 . 

+ ~ - ]  , (40b) 

1 + ( 4 ~  2 aLe1) } (41a) 

where  ~ is defined in equa t ion  (35b). 
I f  fl~. i. is defined by 

__4- 
~ G ,  L ~ ~O~G, L 

and r/is defined as previously by" 

(41b) 

(36) can  be appl ied  to eva lua te  y~. The  p a r a m e t e r  x 
[equat ion (35a)] is replaced by" 

X=-}Qc~c, L [" (42) 

where  Tis  the m e a n  p a t h  leng th  t h r o u g h  the crystal  ( = ½R 
for  a sphere).  The  results  of  the in tegra t ions  are rep- 
resented on Fig. 6 and  Fig. 7 and  are l isted in Tables  
3 and  4. 

F o r  a given ex t inc t ion  cor rec t ion  Ys, the  corre-  
spond ing  value of  X for  a Loren tz i an  d i s t r ibu t ion  is 
larger  t han  for  a Gauss i an  d i s t r ibu t ion  a n d  as a resul t  
indicates  tha t  e~ < C~z. This  is re la ted to the more  rap id  
decrease of  a Gauss i an  d i s t r ibu t ion  wi th  increas ing  
el, c o m p a r e d  wi th  a Loren tz i an  one. It is also evident  
tha t  the ext inc t ion  cor rec t ion  ys, for a given Q, be- 
comes  closer to 1 where the Bragg angle  0 increases.  

Table  4. Secondary extinction correction for a sphere, as a function of X=-~o~t.QT 
and sin 0, assuming a Lorentzian distribution 

All values are multiplied by 104 . 

sin 0 0.05 0.10 0.20 0.30 0.40 0.50 0-60 0.70 0.80 0.90 
x 

0"1 9005 9008 9014 9013 9013 9013 9013 9015 9021 9030 
0"2 8281 8286 8296 8296 8300 8305 8310 8321 8341 8367 
0"4 7174 7182 7199 7205 7218 7237 7259 7292 7365 7409 
0"6 6373 6382 6496 6418 6441 6473 6511 6565 6646 6743 
0"8 5769 5779 5809 5826 5857 5899 5950 6021 6123 6246 
1 5297 5308 5342 5364 5400 5450 5512 5594 5713 5855 
1"5 4469 4480 4521 4550 4596 4658 4735 4836 4979 5155 
2 3925 3936 3980 4014 4064 4131 4215 4325 4481 4676 
2"5 3534 3546 3591 3628 3679 3749 3835 3950 4113 4319 
3 3237 3248 3295 3332 3384 3454 3542 3659 3825 4038 
4 2809 2819 2867 2904 2956 3025 3112 3229 3397 3616 
5 2510 2519 2566 2604 2654 2721 2806 2921 3088 3307 
6 2285 2295 2340 2378 2426 2491 2573 2628 2850 3068 
7 2108 2117 2162 2199 2245 2309 2309 2499 2659 2875 
8 1947 1973 2017 2054 2098 2159 2237 2345 2502 2715 
9 1845 1853 1895 1932 1975 2034 2110 2215 2370 2578 
10 1742 1750 1792 1828 1870 1927 2001 2104 2255 2460 
12 1577 1584 1624 1659 1699 1753 1823 1922 2068 2266 
14 1446 1453 1492 1525 1564 1616 1683 1778 1918 2110 
16 1341 1347 1385 1418 1454 1504 1568 1660 1796 1982 
18 1253 1259 1296 1328 1363 1410 1472 1561 1692 1875 
20 1179 1185 1219 1250 1285 1330 1390 1476 1604 1782 
25 1033 1038 1071 1100 1132 1173 1228 1309 1428 1597 
30 0925 0929 0960 0988 1018 1057 1108 1184 1296 1457 
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Thus the approximat ion of  Zachariasen (Z. 27) is only 
valid for small values of X. An expression of the same 
form as equation (37) gives a satisfactory approxima- 
tion to the numerical  values.* The least-squares-fitted 
values for A(O) and B(O) are given in Tables 5 and 6. 
A reasonable representation of the 0 dependence is: 

AG=0.58+0 .48  cos 20+0"24 cos 2 20 

Bc = 0 . 0 2 -  0"025 cos 20 (43) 

for a Gaussian distribution, and:  

AL=0"025 +0-285 cos 20 
B,  = 0.15 - 0.2 (0.75 - cos 20) 2 if  cos 20 > 0 (43a) 
BL = -- 0"45 COS 20 if  COS 20 < 0 

for a Lorentzian distribution. 
The previous treatments (Zachariasen, 1967; Cooper 

& Rouse, 1970) make use of the approximate function: 

sin 2 (ne l~ )  (44) 
6v(el) = Q~G (rcet~G)2 

which we shall call a Fresnel distribution. (Such a 
function takes values between those of a Lorentzian 
and a Gaussian distribution when the angle et becomes 
large). The same calculations as for a Gaussian and a 
Lorentzian distributions have been done using av(e~). 
The least-squares-fitted values for AF(O) and BF(O) can 
be represented by: 

AF(O) =0-48 +0 .6  cos 20 

BF(0) = 0"20 -- 0"06 (0.2--cos 20) 2, (44a) 

the agreement factor Q(0) being approximately 0.02. 
Finally,  i f  ~>>g (type I crystal): 

~G,-, ~/2g, ~z,-,3g. 

If  ~,~g (type II crystal): 

~ G ' ~ L ~ .  

* The expression for y~ is slightly modified in the case 
of a Gaussian distribution: y~={I+2-12X+A(0)X2/(1 + 
B(O)X)} -l/z, due to the fact that J" #2del= QZo~c/V2 instead of 
a ' ~ , .  ~. 

According to the earlier theory type I and type II are 
the l imiting cases for the scattering behavior of  real 
crystals. The present theory predicts that the crystal 
type may vary with Bragg angle. Even if  (r/2>>g), 
becomes smaller than g where the Bragg angle is very 
small:  as a result, for small-angle scattering, any crys- 
tal behaves as a type II crystal, the extinction being 
dominated by the particle size. 

It can also be expected that (r/2>>g) when extinction 
is severe, since otherwise eG. ,~ would be unreasonably 
small for small Bragg angles. Thus, for severe extinc- 
tion, it can be necessary to introduce a pr imary extinc- 
tion correction, as previously described. 

III. Polarization and absorption effects 

III. 1. Polarization in X-ray diffraction 
The quantities Q and x (or X) are effectively reduced 

by polarization effects, such that 

Q=Qo Kz 

X = Xo K 2  , 

where Qo and Xo correspond to the perpendicular  
(unattenuated) component  of  the electric field (the 
expression for K is given in Appendix E). The two 
components  of  the integrated intensity are then: 

where 

t~ = JovQo cos 2 20y ,, (45a) 

~ ± = JovQoy± , (45b) 

Yll =y(x0 cos 2 20), y±=y(xo). (45c) 

If  the X-ray incident beam is unpolarized, the 
average integrated intensity ~ is: 

= JovQo(y± +y N cos2 20)/2. 

If  the quanti ty p,  is defined as: 

p,=½(1 +cos  z" 20) 

Table 5. Variation with 0 of  the coefficients A(O) and B(O) for a mosaic spherical crystal, 
assuming a Gaussian distribution 

O(0) is the reliability index of the least-squares fit to numerical results. 

sin 0 0"05 0-10 0-20 0-30 0.40 0"50 0.60 0-70 0.80 0.90 
A 1"30 1"28 1"19 1"11 1"00 0"88 0"74 0"60 0-44 0-26 
B - 0.007 - 0.007 - 0.002 0.002 0.005 0.008 0.012 0.020 0.030 0.040 
e 0.020 0.021 0.019 0.021 0.023 0.027 0.028 0.028 0.027 0-023 

Table 6. Variation with 0 of  the coefficient A(O) and B(O) for a mosaic spherical crystal, 
assuming a Lorentzian distribution 

O(0) is the reliability index of the least-squares fit. 

sin 0 0.05 0.10 0.20 0.30 0.40 0.50 0-60 0.70 0-80 0.90 
A 0-30 0.30 0.28 0.26 0.22 0.160 0.095 0.030 0-010 -0.16 
B 0-133 0.133 0.141 0.150 0.146 0.133 0.106 0.051 0.10 0.30 
Q 0.023 0-023 0.023 0.022 0.021 0.020 0.019 0.016 0.020 0.010 
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(p~ is thus the ordinary polarization factor), the kin- 
ematical integrated intensity ~k is" 

~k = JoVQopx 
and ~ is given by: 

~ = ~ k  • Y 
with 

y=  (y±+y,, . cos z 20)/(1 +cos z 20) 
or 

y=(y±p,  y±~+y,jp, y,,~ cos 2 20)/(1 +cos  2 20). 

(46) 

When a monochromator is used, it follows from Aza- 
roff (1955) that for the perpendicular arrangement of 
monochromator and specimen diffraction planes, the 
ordinary polarization factor becomes: 

p~ = (cos 2 20 + cos 2 20M)/(1 + cos 2 20M) 

(where Ou is the Bragg angle for the monochromator). 
y is thus given by: 

y = (y± cos z 20M +y~ COS 2 20)/(COS z 20u +COS z 20). (47) 

A simplified expression for (46) or (47) similar to 
equation (Z. 45) is not recommended, as it is only valid 
for small values of x0. 

III. 2. Absorption effect 
Absorption has been neglected in the previous treat- 

ment, which is therefore only valid when/zR is small. 
If/z is the linear absorption coefficient, equations (10) 
become: 

e/0 -- (5+lt)Io+aI c3 x ~ 
c~I (48) 

- ( ~ + ~ ) I + ~ I o .  Oxz 

The effect of absorption has only to be considered in 
the real mosaic crystal. The integration of equations 
(48) is similar to that of equations (10). The result is: 

~0(~,/z) v -~¢o  ~ ! = dvlo(x~,x2) exp [ - ( p  + 6)T~] (49a) 

=v-110 dvJo(Zi6~T1T~) 

×exp [ -  (~+/z) (7'1 + T~)]. (49b) 

Equation (49b) differs from (17) by a weight 
exp [ -p(T~ + T~)] given to the contribution from each 
point inside the crystal. The effect of absorption is 
therefore a lowering of the contribution from the 
points with a large path length (T~+T~). The im- 
portance of this effect can thus be expected to be larger 
when the Bragg angle increases. Equation (49b) in- 
dicates that for the reflections significantly affected by 
extinction, absorption and extinction are completely 
correlated. Nevertheless, absorption affects all the 
reflections and therefore has to be corrected before the 
structure analysis is started. If A(/z) is the absorption 

factor, in the absence of extinction, and A*(p) its 
inverse, the extinction correction is given by: 

A *( IX)V- ~ I q~(6,p)6(e)del. (50) yu= 

One can expand the 6-dependent part of the inte- 
grand, using (18), which gives with (14): 

oo Q-1 T(u n) 1 6n+ldel (51a) y . =  ~ ( -  l). ~ - . ,  . , 
n = 0  

where T (n) is given by 

t' 
T,,(") = A *(Iz)v -1 \ T (") exp [ - p ( T I +  T~)]dv. (51b) 

o 

Thus, T~ ") is the absorption-weighted equivalent of 
T(n). 

In particular, if T, is the weighted mean path length: 

~ =  Io ( T, + T~) 

× exp [--/x(T 1 + T2)]dv / I exp [-/t(7'1 + T2)]dv 
d v 

1 dA*(/z) 
- A * ( ~ ) "  d ~  (52)  

Yu can be expanded as: 

y u = I - T u Q - I { $  6Zdel} + . . . .  (53) 

So, if in the definition of X, T is replaced by T~,, the 
functional form for the secondary extinction correction 
remains unchanged in the approximation of equation 
(37), and X becomes: 

X ,, = x . -TT "-~- t. (53b) 

This first-order approximation: 

yu(X) ~ y(Xu) (54) 

is only valid for small values of 0 and p. For larger 
values of/z or 0,/z must be considered as a new param- 
eter in the evaluation of y,, leading to coefficients 
A(O, lz) and B(O, lz) in (37). 

In order to test the range of validity of equation (54) 
and to get an expression for Yu including/z as a new 
parameter, different calculations have been done for a 
sphere, varying 0, X, and/zR. It follows from the cal- 
culations that if T is not replaced by T~, in the expres- 
sion for X, the fit given by (37) cannot be used for 
pR>_0.25. Other expressions for ~r u have been given 
(Coppens & Hamilton, 1970) as: 

_ 1 In A. (55) 
/z 

t The primary extinction parameter x is unchanged. 
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Fig. 8. ('r,,/T u) versus #R for different Bragg angles 0, show- 
ing the importance of a correct definition for the absorp- 
tion-weighted path length ~r u. 

Fig. 8 shows that (55) is only equivalent to (52) for 
small values of#R, and that (52) is the only appropriate 
form for #R > 0.25. The variation with #R of the curve 
(1/y,) as a function of X,, for different values of 0, 
is shown in Fig. 9 and Fig. 10, for both a Lorentzian 
distribution and a Gaussian distribution. For small 
Bragg angles, the approximation (54) is valid when 
#R is less than unity. But, if 20 approaches n/2 and 
#R > 0.25, this approximation cannot be used for large 
values of X u. For large Bragg angles, (for which the 
ratio T,/T) is the smallest), X, is in general less than 1, 
so that near 20 = n (54) is again valid for #R less than 
1. The variation o fy ,  with (#R) for large #R and large 
angles becomes unsignificant. 

The least-squares-fitted values for A(O) and B(O) 
(defined in 37) as a function of #R are given for the 
two distributions in Tables 7 and 8, for #R smaller 
than 4. 

Conclusion 
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Fig. 9. Influence of the absorption effect on the extinction 
correction when #(e,) is a Lorentzian distribution. 
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Fig. 10. Influence of the absorption effect on the extinction 
correction when #(e~) is a Gaussian distribution. 

It has been shown that the transfer equations (10), even 
if they only represent incoherently the rescattering pro- 
cesses in a perfect crystal, lead to a reasonable approxi- 
mate expression for primary extinction in a perfect 
spherical crystal. Equations (10) are believed to be 
quite accurate for secondary extinction. An improved 
expression has been obtained for a spherical crystal, 
assuming either a Lorentzian or a Gaussian mosaic 
distribution. The numerical results of the calculation 
of the extinction correction y show that the approxima- 
tion used by Zachariasen (1967) and other authors 
(Cooper & Rouse, 1970) is only valid when the extinc- 
tion is very small. The deviation of the actual value of 
y from Zachariasen's result is much larger for a Gaus- 
sian mosaic distribution than for a Lorentzian distribu- 
tion especially for Bragg angles not too close to zero. 
Since Zachariasen's formula for y has given many 
satisfactory results (Zachariasen, 1968; Chandresekhar, 
Ramaseshan & Singh, 1969) it seems likely that the 
actual distribution is more closely Lorentzian than 
Gaussian. This conclusion is supported by measure- 
ments on large crystals using 7-ray resonance (Maier- 
Leibnitz, 1972). It has also been shown that the extinc- 
tion is due to the particle size for small Bragg angles 
and that if extinction is severe the angular mosaic 
distribution becomes the dominant effect, while 
primary extinction can no longer be neglected. The 
expression for secondary extinction has been modified 
to allow for absorption effects. In further articles 
(Becker & Coppens, 1974) results of refinements using 
these expressions will be considered and the formalism 
will be extended to crystals of more general shape and 
to anisotropic extinction. 

We gratefully acknowledge partial support of this 
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A P P E N D I X  A 
Integral solution of  equations (10) 

F r o m  (10b), if  one  writes:  

I(xi, xz)=a(xl, xz) exp (-axz) 

with the b o u n d a r y  cond i t i on :  

a(xl, x °) = 0  
one ob ta ins  

c3a/Ox2=alo(xl, x2) exp (ax2). 

Thus :  
? X2 

l(xl, x2)=a exp (-ax2) _ Ix o Io(xl, u2) 

x exp (au2)duz. (A1) 

The  to ta l  diffracted power  P(eO, for  a given e~, is: 

P(el)= l l l(M~)u° . ds 

(Fig. 11). (ds .  u °) is the surface e lement  dX of  the 
o r t h o g o n a l  p ro jec t ion  (X) of  the crystal,  paral lel  to 
U 0 . 

I(x~,xl) at the po in t  M i  is ca lcula ted by (A1) and 
using the express ion defining P ( e 0 :  

P(ei)=If(x)dX3xoaIo(xi,xz) exp ( - a t ; ) d x 2  

which  may  be wri t ten as:  

e ( e i ) =  loalo(xi,x2) exp ( - a t e ) d r .  (A2) 

In order  to calculate  (A2), Io(xl,x2) has to be known.  If  
(10a) is in tegra ted  like (10b), one gets (Fig. 2): 

Io(xl, xz)=Jo exp ( -atx)+a exp ( - a x i )  

x exp ( au0du i .  

I f  I(ul,x2) is ca lcula ted by (A 1), one gets:  

Io(x~,x2)=Jo exp ( -  a t , )  + a  2 exp [ - a ( x l  + x2)] 

lXlduil~;du2{Io(ui, u2) x x ° exp [a(ui+u2)]}.  (A3) 

A P P E N D I X  B 
Derivation of  a general expression for q~(o) 

1. The  purpose  of  this Append ix  is to show tha t  by an 
i terat ive use o f  the re la t ion  (A3) in to  re la t ion  (A2), it 
is possible to get for  ~(a) the so lu t ion  given in the text 
by (17). Fo r  a given po in t  M (Fig. 12), the area to be 
cons idered  in re la t ion  (A3) is defined as Si (see Fig. 3). 
Fo r  each po in t  N1 in this domain ,  the co r re spond ing  
area  Sz is defined in the same way. Fo r  po in t  Nk in 
d o m a i n  Sk, area Sk+l is defined. The  po in t  where the 

Table  7. Variation with sin (0) and (#R) of the coefficients A(O) and B(O) determined by least-squares 
for a Gaussian distribution 

#R 

0-5 

1.0 

2.0 

3.0 

4.0 

The first number is A(O) and the second B(O). 
sin 0 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0"90 

1-28 1.27 1.12 1.02 0.91 0-78 0.65 0.52 0.35 0.20 
- 0.008 - 0.008 - 0.002 0.005 0.010 0.014 0.018 0.028 0.038 0"042 

1.28 1-25 1.05 0.91 0.79 0.68 0.56 0.44 0.30 0" 14 
-0.010 -0.010 -0.000 0.011 0.019 0.022 0.026 0.036 0.043 0.035 

1.33 1.30 0.94 0.74 0.61 0.53 0.45 0.34 0-23 0-13 
- 0.013 - 0.013 0-004 0.027 0.039 0.042 0.039 0.047 0.042 0.019 

1.48 1.43 0.94 0.69 0.56 0.49 0-42 0.33 0.24 0.16 
- 0.018 - 0.018 0.009 0.044 0.059 0.060 0.050 0.051 0.046 0.030 

1.64 1.59 1.03 0.77 0.64 0.55 0.47 0.35 0.31 0.26 
-0.021 -0.022 0.017 0.066 0.087 0.089 0.071 0.071 0.072 0.090 

Table  8. Variation with sin 0 and (IzR) of the coefficients A(O) and B(0) ,  determined by least-squares 
for a Lorentzian distribution 

The first number is A(O) and the second is B(0). 

/zR 
0"31 0.30 0"26 0-23 0.18 0"12 0"05 0.000 -0.03 -0"30 

0"5 0.14 0-14 0.15 0-16 0.16 0"14 0"09 0"05 0"49 
0.32 0.31 0"25 0'19 0.13 0"06 0"000 -0.03 -0"08 -0"35 

1.0 0.14 0.14 0.16 0.18 0.18 0.13 0"05 0"08 0"50 
0.37 0.35 0"21 0.13 0.00 0"00  -0"10 -0-20 -0"37 -0"53 

2.0 0.17 0" 16 0" 18 0"40 0"30 0.48 0"63 0"69 
0"45 0.44 0"24 0"03 0"00 -0"06 -0"11 -0.20 -0"35 -0"44 

3"0 0-20 0.20 0.25 0"09 0"14 0.29 0"49 0"57 0.60 
0"58 0.56 0"32 0"07 0"00 -0-02 -0"04 -0-18 -0"21 -0"26 

4"0 0"24 0.24 0.37 0.40 - 0"03 - 0.02 0"29 0-29 0"31 

sin 0 0"05 0.10 0.20 0"30 0"40 0"50 0"60 0-70 0"80 0"90 
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incident beam through Ark intersects the diffracted 
beam through M is defined as MR. Using relation (A3) 
iteratively, ~0(a) can be written [from equation (15) of 
the text] as: 

°° fvdv(M) l, dX(NO ~o(~) = v - ~ ~ .  d ~ 
k =  0 

x exp {-cr[h(M~)+ti(M~)l} (B1) 

where dZ'(Nk)=du~(Nk)du2(Nk). 
The first term in the summation (B 1) is given by 

~Oo(a)=v-' f dv exp [-a(fi + t2)] (B2) 
o 

and corresponds to the first-order approximation. 
The second term tpt(a), allowing for twofold ex- 

~ M ~ ( x , , x ~  °} 
• i a ( x t , x 2 )  

FFRACTED 
( ~..)1 BEAM 

Fig. 11. Projection (2~) of a crystal of general shape on the 
plane perpendicular to the diffracted beam u °. 

~ C T E D  ~ ) 

BEAM ~ . . .  x~, 

Fig. 12. Definition of the nest of domains (Sl) corresponding 
to the points Nl, such that Nl+l is always preceeding Nl. 

change of radiation between I0, I and feedback to I0, 
is given by: 

~o~(a)=v-~a21dv(M) l~ dX(NO 

x exp {-a[h(Mx)+ t2(M~)]}. 

The integrand is independent of the coordinate u~ 
of N~ and it is possible to first integrate over u~: 

~01(0") = v- 'o  "2 l~ dv(M) Iu2(M'du2(M,) 
du2 o 

× min {h(M), tx(Mx)} exp { -a [ t l (Ma)+  t2(M~)]} 

where min {h(M), tl(M1)} is the smallest of these two 
path lengths. At this point, it is necessary to introduce 
an approximation: min {tl(M), q(M~)} will be re- 
placed by q(MO. It is only an approximation when M 
belongs to the domain (B) of Fig. 3 and if point M1, 
is between M and P (Fig. 12). For small Bragg angles, 
the error introduced by this approximation is very 
small. For high Bragg angles, the effect of this approxi- 
mation will be to overestimate ~0(a), which will be 
closer to 1. The next step is to interchange the inte- 
grations over points M~ and M: 

~ol(a)=v-aa z _ I dr(M1) exp {-a[q(M1)+ t2(MO]} 

x q(Mx) du2(M) 
M1 

[since d r (M) ,  du2(M1)=dv(M1), du2(M)] 

tpl(o') = v - l a  2 Iodvtxt2 exp [-a(h + t2)]. (B3) 

Analogously, it is possible to show that: 

I (ht2lk 
~Ok(O')=V--lO "2k dv (-(~.)2 exp [ - a ( h + t 2 ) ] .  (B4) 

tp(a) is thus given by: 
oo 

~(o)= 7: ~(o). 
k = 0  

l ~ (a2htE)k (B5) 
tp(a)=v -1 dvexp[-g(tx+t'2)]. ~,  (k!) 2 

v k = 0  

It can be shown (Abramowitz & Segun, 1965) that: 

~(a)=v-~ l dv exp [ - a ( q  + tl)]Jo[2ia~ht;], (B6) 
v 

where J0(x) is a zero-order Bessel function. 

2. It will be shown that equation (B5) can be written 
as a power series similar to equation (Z. 14) with t2 
and t2 interchanged. If the exponential term is written 
as a series expansion, the integrand of (B5): 

0=exp[ - (~+~) ]  ~ (~)~ ~=0 (k!) 2 
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where (¢=aq ,  r/=at~) becomes" 

~= ~ ( -  1). (¢~)~[¢ + ~]" 
~=0 ,=0 n!(k!) z 

Q can be written as: 
oo 

o= ~ ( - 1 ) ,  A, 
t=o t!  

where the power of ,4 t with respect to both variables 
and r/is t. The calculation of At for t even will be 

developed (t = 2s): 

2p 
A2s= ~ Cs-p..I- j]~s+ p - j  

p=0 j = 0  

If r is defined as" 

it is clear that 

2s! 
[(s_p) l]2j !(2p _ j )  ! • 

r = s - p  + j  

s + p - j =  2 s -  r. 

Azs may be written as: 
2s 

r = 0  
with 

2s! 
2'r = J=0 [(r--J!)]2(2s--2r+j)lj  ! 

=(2rs) ~ (rr-j) (2syr) 
J=O 

Z,=(~s) 2 (Abramowitz & Segun, 1965). 

The final result is" 
2s 

A~= ~ ~,~,~-,(2:)2. 
g=0 

Using similar arguments for odd values of t, it is easy 
to show that" 

oo °~ t ~"~ (B7) ~p(a)= ~ ( -  1)n ~-.t . 
n = 0  

With 

t (") = v -  x dv (n~2tJ t'n-J j] i 2 
v J=0 

(B7) is similar to (Z. 14) with tz and t~ interchanged. 

3. This Appendix will be concluded by studying the 
limiting cases (20=0) and 20=re. For (20=0), the 
solution of equation (10) becomes a one-dimensional 
problem ( f i=t2=t ;  t 2 = l - t )  (Fig. 13). One gets easily 

( p ° ( a ) = v - 1 1  dv exp [ - 2 a t ] .  ( B 8 )  
t3 

It will be shown that in this limit the approximation 
(B5) gives the same value as (B8). From (B5)" 

l O.2k 
~°(a)=v-1 veXp ( - a l )  k=o ~ ~ tk(l--t)kdv" 

If one defines the surface element dE (Fig. 13) by 

dv = d Z'dt, 

it follows that: 

~o(a) = v - '  d S  exp ( - a l )  k=o~ ~ tk ( l -  t)kdt" 

Since" 
II 12n+l t72n t " ( l - -  t )  n d t  = a 2n 

(n0 2 (2n+ 1)t 
one gets 

~o(a)=v_l S g ~ sinh (al)a exp ( -a l )dZ ' .  (B9a) 

Integration of (B8) along the incident direction gives: 

Since expressions (B9a) and (B9b) are equal: 

~0°(~) = ~0(~). 

For 20 = re, the integration of equations (10) gives the 
result: 

l dv (B10) 
(P'~(°)=v-I v 1 + a l  

which differs from the approximate value given by 
(B7). 

APPENDIX C 
D e r i v a t i o n  o f  ~(~1)  for  a c o n v e x  c r y s t a l  

From equation (2) 

lk(8) = J0  aFK[ z I Z exp [2rcie. L/2] 12. 
Ro I T 

\ f / 

"'S ....... 2 

INCIDENT BEAM 

:7:,) 

Fig. 13. Geometry for 20=0 and 20=zr; l= o 1 M1M1. (a) 20=0, 
h = t, t~ = l -  t. (b) 20 = zr, ti = t~ = t. 
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F rom (3) and (4): 

V z sin 20 
o ' ( e0=Q v 23 A ,  (C1) 

where A is defined by: 

A = I I de2dea[ ~ exp (2ni~. L/2)[ z. (C2) 
L 

If in (C2) the summation over the lattice points is 
replaced by an integral over the volume of the crystal: 

exp (2n i t .  L / 2 ) ~  V-X I exp (2hie.  r/2)dv, (C3) 
L v 

A becomes: 

S S S A =  dv dv' daz d 8  3 

x exp [2ni~. ( r - r ' ) /~ . ] .  (C4) 

Reciprocal space is referred to axes {za,'~2, %}, defined 
in Fig. 14. If direct space is referred to the reciprocal 
of the previous frame, its unit axis are ~ ,  parallel to 
u°, oz parallel to u0 °, to 3 parallel to % (Fig. 14). Thus 
(C4) t ransforms to:  

? o 
A = \ \ dvdv' exp [2n ie l ( r l - r£ ) s in  20/2] 

d v t J v  

x l ] ~ e x p  [2nie2(rz-rz) sin 20/2]dez 

x exp [2nie3(r3 - r;)/2]de3 

= f~ lo dvdv' exp [2niel(r l - r£)  sin 20/),] 

x 3[ ( r2- r ; )  sin 20/2]fi[(ra-r;)/2]. 

U o 

5 

(1o 3 
~ ( X )  

Fig. 14. Projection of the crystal parallel to the diffracted 
beam, onto the plane defined by the incident beam and the 
normal to the diffraction plane, m is a point of the projec- 
tion (Z'). i and j are the point of entrance and the point of 
exit of the parallel to u ° through M. l is equal to ~. 

Because, for a Dirac distribution, 

~(kx)=lkl-a~(x), 
A can be written as" 

"SS A = sin 2~0 , , dvdv' exp [2n iedra-  r£) sin 20/2] 

x 6(rz-r;)fi(rs-r;).  (C5) 

Since for a convex crystal 

dv = drldr2dr3 sin 20 = dZ 'd (mM) ,  sin 20, 

(C5) can be written as" 

A = 2 z sin 201z lzd,Y, dZ '3 (m-m ' )  

l' x exp [2nielmM sin 20/2]d(mM) 
i 

x exp [ - 2 n i e l m ' M '  sin 20/2]d(m'M'). 
i 

mi and mj are functions o f m  only. I f f (m)  is defined as: 

f ( m ) =  I j exp [2hie, raM sin 20/2]d(mM), 
d i  

F i g .  15. T h e  c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  (z,  0) .  z a n d  0 a r e  
r e l a t e d  b y :  0 2 + z 2 = r 2. 

A becomes" 

A = 22 sin 20 f~ dXf(m) I / * ( m ' ) 3 ( m - m ' ) d S '  

A=2 z sin 201 d£[f(m)l z. (C6) 
,1 27 

ij, which is the thickness of the crystal parallel to the 
diffracted beam, is written as l(m). Thus:  

sin 2 [nell sin 20/2] 
If(m)lZ=l z 

[nexl sin 20/2] z 

If the quanti ty 0~ is defined as" 

= l sin 20/2 

sin 2 (he :0  
If(m)lZ=l z 
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If dv is written as: 

dv = dX.  l sin 20 

the final result becomes" 

~odVe sin2 (nele) G(el) = Qv -1 
(rcele) ~ 

(C7) 

APPENDIX D 
Some mathematical derivations for spherical crystals 

Derivation of  a(el) 
With the notations of Fig. 15, and choosing the x 

axis to be parallel to the diffracted beam u °, one gets, 
as the integrand in equation (19a) is only dependent 
on z ( l= 2z), 

dv = 4rcz2dz 

I ~ 4rczZd z sin z (2nzel sin 20/2) 
G(e l )  v - l Q  0 (2rczel sin 20/2) z .2z sin 20/2 

which, by integration gives (29). 

Mean values of  simple functions of  the path lengths in 
spheres 

The mean over the volume of the nth power of the 
thickness 1 of the crystal can be evaluated as follows: 

- S Sl l" = v-1 dr .  l "= v-1 4rczZdz. (2z)" 
0 

l~ - 2". 3(r)" (D1) 
n + 3  

The mean over the volume of the nth power of the 
depth h or t~ parallel to the incident or the diffracted 
beam is given by (with the notations of Fig. 15)" 

t~ = t~" = t" = v-  ~ Ii 2rcodo I~ t"dt 

l i4nozdQ2"zn 
=v-~ -n+ 1 " 

Since 0d0 + zdz = 0, one gets 

- -  2" 3 (r)" 
t "=  " " (D2) (Z. 17) 

(n+ 1) (n+ 3) " 

For 20=0" 

t (")(0) = 20t" (D3a) 

where t c") is defined in (18b). 
For 20= rc since 

t, = t2 = t 
one gets 

t("----)(rc) 7" ~ , 2 _  , = . (j) _ ~ ~ (j) (~_~) =~(2,) .  (D3b) 
] J 

Calculation of  diffracting cross sections in real crystals 
6(el), defined by (21)" 

will be calculated for a Gaussian or a Lorentzian 
mosaic distribution" 

W6 = 1/2g exp ( -  2rce2g 2) 
WL = 2g/(1 + 4rc~e2g2). 

If F and F -1 are the Fourier transform and inverse 
Fourier transform operators, 

a.  W= F - I ( F a F W ) -  F-~(X . co). 

The Fourier transform Z(r/) of W is given by: 

Z~ =exp [ -  nrl2/2g 2) 

zL=exp (- Iql /g) .  

The Fourier transform of the integrand of (19a) 

sin 2 (nee) 
d(e)=e (rcee)' 

is given by 

co(r/) = (1 -Ir/lle) if Ir/l < e 
=0  otherwise. 

Because e = 2 z  sin 20]2, with the notation of Fig. 
15, one gets by inverse Fourier transform of Of. co)" 

Lorentzian distribution 

fo  d Si2(1 
x exp ( - x / g )  cos 2nelxdx (D4) 

which can be analytically integrated. The result is a 
complicated function of both parameters fl and g. 

Gaussian distribution 

3Q 

x exp (-rcx2/2g 2) cos 2rceixdx (D5) 

which can only be integrated using transcendental 
functions. 

The solutions given by (D4) and (D5) are not suited 
for an easy use in integration of {6~0(6)}. 

However, if a(e) is approximated either by a 
Lorentzian or a Gaussian distribution, the derivation 
of 6(e) becomes straightforward. The approximations 
for a(e) are given by: 

aa(el) = Q~ exp ( -  rce2~ 2) (Z. 35) 

aL(el)=Q-~a/[1 + (~nela)z]. (Z. 26) 

Writing o(e) respectively as: 

6r~(el)=aL(el)* Wz(eO (D6a) 
6a(ei) = a6(e0* W~(el), (D6b) 

one obtains: 

6~.(el)=-~QeL/[1 + 4rceleL) 21 (D7) 

A C 30A - 2 
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with Q 

and 

with 

A(Z) 
A*(Z) 
A(O),B(O) 

g 

H 

Io(M)  

I(M) 

1~(~) 

Jo 

K 

l 

L 
rk(el) 

~k 

~ ,, , ~ 2. 

~ ,=a /  1 + ~ -  

6~(el) = Qo~ exp ( -  zcelZe~) 

aG=~l 1+ 

(D8) 

Q0 
r 

R 
Ro 

APPENDIX E 
Glossary of symbols /'1, T2 

10 -12 cm for neutron diffraction t 

for X-ray diffraction, t (") 

The transmission factor. 
The quantity [1/A(p)]. 
Least-squares fitted coefficients occurring T (") 
in the expression for y. T 
The structure factor in cm (unit cell) -1 
for neutrons, in electrons (unit cell) -1 for Tu 
X-rays. 
Width parameter of the mosaic distribu- t~,) 
tion. 
A reciprocal vector: particular value of S 
when the Bragg condition is fulfilled, u0, u 
Intensity of the incident beam in direction u0,u0 
u0, at a point M inside the crystal, cm -2 

- 1  s e e  

The intensity of the scattered radiation in v V 
direction u, at point M inside the crystal, W(t/) 
cm-  2 see- 1. 
The intensity of radiation scattered in 
direction u, in the kinematical approach, 
cm -2 sec- 1. 
The intensity of the incident beam before 
it strikes the crystal, cm -z sec -1. x 
The coefficient of polarization: 1 for neu- 
tron diffraction; 1 for the parallel com- 

Xo ponent of X-ray electric field; cos 20 for X 
the perpendicular component of X-ray 
electric field. x0 Local thickness of the crystal parallel to the Xu 
diffracted beam. 
A lattice vector in the crystal, y 
The power recorded in the counter for a 
given direction of the incident beam, in the Yp,Ys 
kinematical approach, sec -1 
The power recorded in the counter, for a 
real crystal, sec-k 
Integrated intensity of a Bragg reflection in %, 
the kinematical approximation, sec- ~ 
Integrated intensity of a Bragg reflection in 
a real crystal, sec-~ c~ 
Values of ~ for the parallel and perpen- 
dicular components of the X-ray electric 
field. 

Xl, X2, X3 

Y II ' 22. 

Average scattering cross section per unit 
volume of crystal, cm -1 
Same as Q for K =  1. 
Radius of an ideal spherical crystal. 
Radius of a mosaic spherical crystal. 
The distance between the crystal and the 
counter. 
Diffraction vector: ( u -  Uo)/2. 
Depth along the incident direction. 
Depth along the diffracted direction. 
Distance along the diffracted beam be- 
tween a point and the exit from the crystal. 
Same path lengths as tl and t~, for a mosaic 
crystal. 
Mean path length through a perfect crystal 
(3r for a sphere). 

Mean value over the crystal volume of 
~,(~)2t~t2 n - j  
J 
Same as t ('), for a mosaic crystal. 
Mean path length through a mosaic crys- 
tal (~2R for a sphere). 
The absorption-weighted mean path length 
through the real crystal. 
The equivalent of t (') when absorption is 
not negligible. 
Unit vectors parallel to the directions of 
the incident and diffracted beams. 
Particular values of u0 and u when Bragg 
condition is exactly fulfilled. 
Volume of the crystal, cm 3. 
Volume of the unit cell, A a. 
Angular distribution of the crystallite in- 
side a real crystal. 
Coordinates of a point inside the crystal, 
along axes parallel to the incident direc- 
tion, the diffracted direction and the per- 
pendicular to the diffraction plane. 
The extinction parameter" ZQaf  for a per- 
fect crystal. 
The value of x for K =  1. 
The extinction parameter: 2 ~Qc~G,z.T for a 
mosaic crystal. 
The value of X for K =  1. 
The extinction parameter when absorption 
is present Xj ,=XT~, /T.  
The extinction corIection: ~@/~k 
Primary and secondary extinction correc- 
tions. 
Extinction corrections for the parallel or 
perpendicular component of the X-ray 
electric field. 
The extinction correction when absorption 
is not negligible. 

l sin 20 
Parameter: . . . . .  

2 
The mean value of a over the crystal 
volume (3r sin 20/2 for a sphere of radius r). 
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0CG, OC L 

0 
OM 
2 
It 
G(c~) 

~(~) 

"~1 

"~2 

~o(G) 

e°(G), e~(~) 

Quantities analogous to ~, for a mosaic 
crystal, corresponding to a Gaussian or to 
a Lorentzian mosaic distribution. 
The quantity ]~. 
( S - H ) .  The component of e along the 
vector ~ is the small angle e~ ( i= 1,2,3). 
el: divergence of the incident beam. 
Bragg angle. 
Bragg angle of the monochromator.  
Wavelength of the radiation, A. 
The linear absorption coefficient, cm -1. 
Diffracting cross section per unit of volume 
and intensity, cm -1 
Average diffracting unit cross section in a 
mosaic crystal. 
Unit vector in the diffraction plane, per- 
pendicular to Uo °. 
Unit vector in the diffraction plane, per- 
pendicular to u °. 
Unit vector along the vertical axis, (per- 
pendicular to the diffraction plane). 
Extinction correction function for a given 
direction of the incident beam. 
Exact solutions for ~0(a) for 2 0 = 0  and 
20=n.  
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